statstests.tests.shapiro_francia¶
- statstests.tests.shapiro_francia(array)¶
The statistical test of Shapiro-Francia considers the squared correlation between the ordered sample values and the (approximated) expected ordered quantiles from the standard normal distribution.
The p-value is computed from the formula given by Royston (1993). This function performs the Shapiro-Francia test for the composite hypothesis of normality, according to Thode Jr. (2002).
Example
In [1]: import pandas as pd In [2]: import statsmodels.api as sm In [3]: from statstests.datasets import bebes In [4]: from statstests.tests import shapiro_francia # import bebes dataset In [5]: df = bebes.get_data() # Estimate and fit model In [6]: model = sm.OLS.from_formula('comprimento ~ idade', df).fit() # Print summary In [7]: print(model.summary()) OLS Regression Results ============================================================================== Dep. Variable: comprimento R-squared: 0.903 Model: OLS Adj. R-squared: 0.901 Method: Least Squares F-statistic: 667.7 Date: Thu, 20 Oct 2022 Prob (F-statistic): 3.72e-38 Time: 14:03:22 Log-Likelihood: -207.26 No. Observations: 74 AIC: 418.5 Df Residuals: 72 BIC: 423.1 Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 43.1004 1.034 41.665 0.000 41.038 45.163 idade 0.9411 0.036 25.841 0.000 0.868 1.014 ============================================================================== Omnibus: 21.203 Durbin-Watson: 0.278 Prob(Omnibus): 0.000 Jarque-Bera (JB): 29.159 Skew: -1.218 Prob(JB): 4.66e-07 Kurtosis: 4.877 Cond. No. 62.7 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. # Print statistics of the normality test In [8]: shapiro_francia(model.resid) method : Shapiro-Francia normality test statistics W : 0.9087044262594457 statistics z : 3.627650491545381 p-value : 0.00014300603555437565 Out[8]: {'method': 'Shapiro-Francia normality test', 'statistics W': 0.9087044262594457, 'statistics z': 3.627650491545381, 'p-value': 0.00014300603555437565}
The statistical test of Shapiro-Francia considers the squared correlation between the ordered sample values and the (approximated) expected ordered quantiles from the standard normal distribution.
The p-value is computed from the formula given by Royston (1993). This function performs the Shapiro-Francia test for the composite hypothesis of normality, according to Thode Jr. (2002).
References
[1]Royston, P. (1993). A pocket-calculator algorithm for the Shapiro-Francia test for non-normality: an application to medicine. Statistics in Medicine, 12, 181-184.
[2]Thode Jr., H. C. (2002). Testing for Normality. Marcel Dekker, New York.